tree n. 特里〔姓氏〕。 n. 1.樹〔主要指喬木,也可指較大的灌木〕。 ★玫瑰可以稱為 bush, 也可以稱為 tree. 2.木料,木材;木構件;〔古語〕絞首臺;〔the tree〕(釘死耶穌的)十字架;鞋楦。 3.樹形(物),世系圖,家系 (=family tree);【數學】樹(形);【化學】樹狀晶體。 a banana tree 香蕉樹。 an axle-tree 心棒,軸料。 a boot-tree 靴楦[型]。 a saddle-tree 鞍架。 at the top of the tree 在最高地位。 tree of Buddha 菩提樹。 tree of heaven 臭椿。 tree of knowledge (of good and evil) 【圣經】知道善惡的樹,智慧之樹。 tree of life 生命之樹,生命力的源泉【植物;植物學】金鐘柏。 up a tree 〔口語〕進退兩難,不知所措。 vt. 趕(獵獸等)上樹躲避;〔口語〕使處于困境;窮追;把鞋型插入(鞋內)。
Improves on the classification and regression trees technology , increases it ' s classification precision 對分類回歸樹數據挖掘技術進行了改進,使之具有更高的分類精度。
The thesis combines generalized computing theory with classification and regression trees technology , makes the great theory innovation 本文把廣義計算理論和數據挖掘技術相結合,具有很強的理論創新意義。
Combines multi - rules neural network with classification and regression trees technology based on generalized computing theory , implements the abnormal customers recognition system 基于廣義計算思想,把多準則神經網絡和分類回歸樹技術相結合,實現異動客浙江大學碩士學位淪義綴戶識別系統。
Based on the generalized computing theory , the thesis combines multi - rules neural network with a kind of decision tree - classification and regression trees . further more , we put forward a new kind of abnormal customers recognition model 為進行客戶關系管理,本文基于廣義計算思想,將多準則神經網絡和一種決策樹? ?分類回歸樹相結合,提出了一種新的異動客戶識別模型。
The model can improve classification precision and recognition efficiency effectively , make full use of the advantages of multi - rules neural network and classification and regression trees , and make up their respective disadvantages at a certain extent 該模型能夠有效提高分類精度和識別效率,充分利用多準則神經網絡和分類回歸樹各自的優點,一定程度上避免各自的缺陷。
And then , the thesis brings forward a new modeling method - abnormal customers recognition system based on generalized computing and classification and regression trees . the system is composed of multi - rules neural network learning part and classification and regression trees processing part 然后,通過深入研究多準則神經網絡和決策樹的特點,論文提出了將多準則神經網絡應用于決策樹的建模方法? ?基于多準則神經網絡和分類回歸樹的異動客戶識別系統。
The work that is carried out by me for this project as follows : at first , works over the decision tree technology and the multi - rules neural network theory based on the generalized computing , outlines the advantages and disadvantages of the two theories , analyzes the possibility to combine multi - rules neural network with classification and regression trees , and studies some achievement in this field 為完成這個項目,本人所做的工作具體如下:首先研究了數據挖掘技術中的決策樹技術和基于廣義計算的多準則神經網絡理論以及兩種理論的優缺點。分析了多準則神經網絡和決策樹相結合的可能性及優勢,并深入了解目前該方向的發展情況。
Along with the rapid development of the technology of data warehouse and data mining , customer relationship management ( crm ) becomes more and more important . on this need , we advanced the project of abnormal customers recognition system based on generalized computing and classification and regression trees ( cart ) 基于廣義計算和分類回歸樹異動客戶識別系統這個項目,是在數據倉庫技術和數據挖掘技術迅速發展的基礎上,針對企業客戶關系管理的迫切需要而提出的。
Classification and regression trees processing part introduces growing algorithm of cart , pruning algorithm of cart and selecting best tree algorithm etc . on the basis of the concerned new model , the thesis presents in details the designing of multi - rules neural network based cart system for abnormal customers recognition 在分類回歸樹部分,介紹了分類回歸樹的生長算法、最小代價?復雜性剪枝算法以及最優樹選擇等算法。提出了系統設計之后,論文詳細介紹了該系統的開發,用以解決異動客戶的識別問題。